95 research outputs found

    Attribution of 2012 extreme climate events: does air-sea interaction matter?

    Get PDF
    In 2012, extreme anomalous climate conditions occurred around the globe. Large areas of North America experienced an anomalously hot summer, with large precipitation deficits inducing severe drought. Over Europe, the summer of 2012 was marked by strong precipitation anomalies with the UK experiencing its wettest summer since 1912 while Spain suffered severe drought. What caused these extreme climate conditions in various regions in 2012? This study compares attribution conclusions for 2012 climate anomalies relative to a baseline period (1964–1981) based on two sets of parallel experiments with different model configurations (with coupling to an ocean mixed layer model or with prescribed sea surface temperatures) to assess whether attribution conclusions concerning the climate anomalies in 2012 are sensitive to the representation of air-sea interaction. Modelling results indicate that attribution conclusions for large scale surface air temperature (SAT) changes in both boreal winter and summer are generally robust and not very sensitive to air-sea interaction. This is especially true over southern Europe, Eurasia, North America, South America, and North Africa. Some other responses also appear to be insensitive to air-sea interaction: for example, forced increases in precipitation over northern Europe and Sahel, and reduced precipitation over North America and the Amazon in boreal summer. However, the attribution of circulation and precipitation changes for some other regions exhibits a sensitivity to air-sea interaction. Results from the experiments including coupling to an ocean mixed layer model show a positive NAO-like circulation response in the Atlantic sector in boreal winter and weak changes in the East Asian summer monsoon and precipitation over East Asia. With prescribed sea surface temperatures, some different responses arise over these two regions. Comparison with observed changes indicates that the coupled simulations generally agree better with observations, demonstrating that attribution methods based on atmospheric general circulation models have limitations and may lead to erroneous attribution conclusions for regional anomalies in circulation, precipitation and surface air temperature

    agr-Mediated Dispersal of Staphylococcus aureus Biofilms

    Get PDF
    The agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). Recent studies have suggested a role for the agr system in S. aureus biofilm development, as agr mutants exhibit a high propensity to form biofilms, and cells dispersing from a biofilm have been observed displaying an active agr system. Here, we report that repression of agr is necessary to form a biofilm and that reactivation of agr in established biofilms through AIP addition or glucose depletion triggers detachment. Inhibitory AIP molecules did not induce detachment and an agr mutant was non-responsive, indicating a dependence on a functional, active agr system for dispersal. Biofilm detachment occurred in multiple S. aureus strains possessing divergent agr systems, suggesting it is a general S. aureus phenomenon. Importantly, detachment also restored sensitivity of the dispersed cells to the antibiotic rifampicin. Proteinase K inhibited biofilm formation and dispersed established biofilms, suggesting agr-mediated detachment occurred in an ica-independent manner. Consistent with a protease-mediated mechanism, increased levels of serine proteases were detected in detaching biofilm effluents, and the serine protease inhibitor PMSF reduced the degree of agr-mediated detachment. Through genetic analysis, a double mutant in the agr-regulated Aur metalloprotease and the SplABCDEF serine proteases displayed minimal extracellular protease activity, improved biofilm formation, and a strongly attenuated detachment phenotype. These findings indicate that induction of the agr system in established S. aureus biofilms detaches cells and demonstrate that the dispersal mechanism requires extracellular protease activity

    DNA methylation and methyl-CpG binding proteins: developmental requirements and function

    Get PDF
    DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function
    • …
    corecore